
MASTERTHESIS

Mr
Jonas Bentke

Incentivisation structure for the
Incentivised Remote Node

Network protocol

2020



Faculty of Applied Computer and Life Sciences

MASTERTHESIS

Incentivisation structure for the
Incentivised Remote Node

Network protocol

Author:
Jonas Bentke

Study Programme:
Distributed Ledger Technologies

Seminar Group:
BC18w1-M

First Referee:
Pr. Dr. Andreas Ittner

Second Referee:
M. Sc. Steffen Kux

Mittweida, 10 2020



Bibliographic Information
Bentke, Jonas: Incentivisation structure for the Incentivised Remote Node Network protocol,
40 pages, 9 figures, Hochschule Mittweida, University of Applied Sciences, Faculty of Applied
Computer and Life Sciences
Masterthesis, 2020

Abstract
This work is an analysis of the IN3 protocol and suggests solutions to the free rider problem,
server scoring and selection as well as payment incentives.
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1 Introduction

Since Ethereum’s inception, the authors were always concerned about network capac-
ity, because of this they envisioned a light client that is able to validate blockchain data
without the need of downloading a lot of the chain. To this day the Light Ethereum Sub-
protocol (LES) [24] is still under development. Blockchains Development Labs (formerly
slock.it) at Blockchains LLC is currently developing a similar protocol that removes some
of the Obstacles present in the LES and is called the Incentivised Remote Node Net-
woek (IN3). This work is taking a closer look at some of the obstacles that can arise
when pushing IN3 into the production stage.

While LES is running inside the p2p system of Ethereum, IN3 is taking a
different approach and is building a second layer on top of it. The layers are connected
by the IN3 servers that connect directly to an Ethereum node. IN3 clients are connecting
to those servers to make requests pertaining to blockchain information. In order for this
protocol to work, there must be some incentive for the servers to process those requests.
Introducing payments into a protocol can be challenging and complex. The protocol
must now not only be resistant to software attacks but also to loopholes in the economic
model. Free riders and monopolies can dominate and even destroy small markets. How
the client is picking a server plays a big part in enabling healthy competition among
the providers. How and when the client will pay also depends on trust build among the
participants and whom the client chose to interact with.

This document starts by providing a summary of specific Ethereum features
that are needed to understand how IN3 works. Then it contains a short explanation
of IN3 and why it is needed. The economics of request distribution and a solution
to the free rider problem is covered in Chapter 4. Chapter 5 covers server scoring
and selection. It highlights the specific attributes that need to be considered for an
adequate scoring model. Optimal selection of servers is briefly considered, followed
by a validity estimation for a consensus based selection. Finally, this document will
cover the economics of payments within the in3 protocol and how reputation systems
can be used to prevent monopolies and helps to enable post pay systems. This will be
used to highlight a selection of layer 2 solutions to implement payments under specific
constraints.
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2 Ethereum basics

This chapter highlights the most important features of the Ethereum Blockchain, it in-
cludes the key features of IN3, and provides an overview of the topics covered in this
thesis.

Ethereum is a distributed general purpose state transition machine. The state
is made up of key value pairs where the keys are addresses and the values are ac-
count states. Every account state contains key information such as the current program
counter (nonce), its balance, storage root, and when the state points to a smart contract
it is also the codeHash. A transaction can change individual or multiple account states,
which then changes the state of the overall machine. The Ethereum virtual machine
is controlled by a set of commands which define the rules of changing the state. How
this is done is not important for the IN3 use case, suffice to say that every participant
runs new transactions locally on their own virtual machine to verify the validity of the
transaction and the resulting state.

In order to reach a consensus on the order of executed transactions, block
generators gather and summarise transactions into blocks. Additonally the header of
the block contains several important hash values. They contain the hash of the previous
block header and the mixHash which are both needed for block verification, the state-
Root which is the root hash of the state tree, the transactionRoot which is the root hash
of the transactions included in this block, and the receiptsRoot which is the root hash of
the transaction receipt tree.

In order to understand the importance of the previously mentioned root hashes,
an explanation of a merkle tree in required. A merkle tree is a data structure that stores
key value pairs and works similar to a normal radix tree (trie). It has a root node, normal
nodes or branches, and leaves. Ethereum in fact uses Merkle Patricia trees, which opti-
mise the structure and those optimisations are not inline with the scope of this thesis as
knowledge of normal merkle trees is sufficient. Figure 2.1 shows how a merkle tree is
structured. Each node is in essence a list of key value pairs, where the value is a hash
of another node. With that hash, we can look up another node in the database which
contains itself a list of key value pairs. The size of the list is dependent on the alphabet
used, in this case, 16 as its hexadecimal. The depth of a tree is dependent on the key
size which is here 32 bytes.

The example of figure 2.1 shows that more clearly. Here the value of the key
0x12F is the one requested. To do that the tree needs to be traversed by getting the root
node and check index 1. Index 1 contains the hash value of the child node linked to that
position. The value can be found by looking up the hash in the database. That position
contains yet another list with 16 hash values. Here the search key now specifies the
next value to be at index 2. At the end it can be found that index F contains the address
to reach the value stored there and which shows that it is a leave. The content of the
leave is then the value for the key 0x12F. Hashes are generated from the contents of
the node. The example shows that Hash 3-1 is generated directly from the data. If the
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Figure 2.1: General depiction of a Merkle Tree

data changes, the hash changes and is propagated upwards to the correct key index.
This will then change Hash 2-1 and so on until the root hash has changed.

The reason for having such a trie is to enable quick and cheap data verifi-
cation. Data can be verified by delivering the hashes that lead to the root hash. For
example on the transaction trie, an Ethereum node can easily prove that a transaction
is in the block, by delivering that transaction and all hashes to the requester. This tech-
nology is used by light clients that do not store the complete blockchain, but instead
only the list of block headers. If the user needs to know when a transaction has been
executed, and at which specific block, then a request for a merkle proof can be made
from a node. That merkle proof can then be verified against the receiptsRoot contained
in their copy of the blockheader. Blockheader verification is easy as long as they have
the complete list stored locally.
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3 IN3

3.1 Why IN3 is needed
Running an Ethereum client comes with its own challenges. At the time of writing a full
archive node consumes 4 TB of storage space and a normal full node is still around
300GB with pruning1 active. In order to synchronise with the network the client will
need to be run on an SSD. These requirements represent a huge barrier for anyone that
wants to connect to the Blockchain.

To enable more people to access the network, client providers have come
up with a couple of different technologies to facilitate smaller devices like light clients.
But, even if those clients would be enough for stationary devices most users and with
that most use cases require the client to run on a mobile device. Going a step further
and covering the use cases of the IoT industry the client would actually be required to
run on a much smaller device. Light clients can not efficiently run on these devices for
multiple reasons. One reason is the problem of synchronicity. In order to use the client,
it must get up to date with the latest blocks which can take some time depending on the
last update. This would simply not be accepted by any user for any app, especially for
payments. Another reason is bandwidth. Keeping the blockchain up to date requires a
lot of data to be exchanged. That can be very bothersome for mobile users that do not
run on a data flat rate.

The current standard to circumvent all of these problems is to run a remote
client. This is where user software does not run its own blockchain client anymore
but simply connects to a server that does. This way all the initial problems such as
bandwidth and waiting times are solved. It however, comes with a caveat. Blockchain
technologies’ big advantage over traditional cloud-based infrastructure is decentralisa-
tion. Decentralisation not only in terms of connectivity but also in terms of Blockchain
governance. The first issue is very clear. If a company must run its own backend to
connect to the blockchain it might as well run its own database to begin with. It is much
cheaper than storing the data on a blockchain. Thus many small companies decided to
connect to an external service that handles the blockchain connections for them.

The market leader in this field is Infura. As described in [21] forking is a
new governance tool introduced through blockchain. It enables nodes to split from the
original network if they disagree with an update. It is a vital and important part of the
ecosystem since update creation is already centralised and client diversity is very low.
Through remote nodes, however, even forking becomes centralised. Take a provider
like Infura. According to recent surveys, 63% stated that they use Infura for their dApp.
Those 63% also represent the revenue made by miners. Infura would have huge bar-
gaining power with the miners on whether to accept or decline the proposed fork. Miners
rely on the traffic Infura brings to the network and Infura relies on the miners for process-

1 Pruning is a technique used by ethereum clients to delete unneeded data. That data could be older
states or address storage that has only been touched but not used
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ing power. Mining is, however, a competitive business and thus Infura would just need
to collude with a fraction of the total mining power.

To cover the problems of usability and decentralisation, Blockchains devel-
oped a client that solves those issues.

3.2 How IN3 works
To achieve the attributes of usability and decentralisation, IN3 is building a second layer
on top of existing blockchains (we will further use Ethereum as the subject of explana-
tion). This second layer consists of servers that access blockchain nodes directly. Each
server must be registered in a special registry smart contract. In order to register, the
server operator must leave a security deposit that can be slashed to punish any mis-
behaviour. Clients have to get a node list either from the set of boot nodes or must be
preconfigured with one. They can then start to send requests to servers on that list.

Since regular answers can not be validated by the client itself, the server has
to send some form of proof along with its response. IN3 is using the merkle trees and
corresponding proof data to verify the validity of the response, however not the validity
of the underlying blockhash. We already mentioned that traditional light clients need
to verify the complete list of blockheaders and the corresponding blockhashes. Some
requests such as the aforementioned blockhashes can not be checked through merkle
proofs. Other examples for these kinds of requests are those that rely on the context of
the host machine. An example would be the latest Block Number, since the server might
not have received the latest block number yet or is on a micro fork. These requests are
vital to the network and so the server must serve them

All the client can do at that point is to query those requests from multiple
sources and compare them with each other. This involves a certain risk of being
scammed into believing false information, and a more extensive risk analysis is dis-
cussed in chapter 5.1. Avoiding malicious Server nodes is ensured through an internal
ranking system that downvotes servers that send responses that do not match with the
other query results. Server nodes will be ranked by each client internally. This ranking
includes different attributes like response time or correctness. This form of ranking is
necessary to improve performance from the client’s perspective since it’s only choosing
the best in spot server node for its requests. Slower or untruthful nodes will lose traffic
and thus money and must either improve their score or drop out of the system. Chapter
5 will cover how the ranking system is built up.

Multiple problems arise if those features are not implemented correctly. Some
of these problems may exist only in theory now. However, because the problems are
present on the protocol level they can rapidly become a reality. The problems presented
manifest in two broader categories, which are monetary problems server side and mon-
etary problems client side. Each server has costs and those costs must be covered.
If they are not covered (not even necessarily through monetary means) the incentive is
lost to run a server and the system collapses. On the other hand, clients also have costs
that arise not only from potentially paying servers but also in the form of time conflicts,
for example if a client has to ask hundreds of servers before getting a reliable answer.
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The following sections will describe those problems in more detail and offer
solutions that can help with the implementation later on. The next chapter will cover
unvalidated requests and how IN3 has a problem with free riders. Following is the client
scoring and how it should be built up as well as how servers should then be selected
based on that score. Lastly, we will look at the payments of request, how they should
be made, and what pitfalls to look for. That section also includes different payment
technologies and how they are currently implemented.
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4 Unvalidated Requests

4.1 Tragedy of the commons
The tragedy of the commons is termed by the American ecologist Garrett Hardin in
his equally named paper that he based on a pamphlet by William Forster Lloyd [3].
In his paper, he describes a setting where a common good accessible to anyone is
overused by some, but the resulting damage is carried by all. One of many examples
is overfishing. Each rational acting fisher wants to maximise his profits and thus fishes
as much as he can. For every other fisher that reasoning is sounding as well and thus
overfishing occurs where species go extinct and the seas will become empty in the
long run. This problem can also be seen in very localised events. During a marketing
campaign of a local gas station, every citizen was entitled to 20 liters of free gas [5].
This resulted in multiple km long traffic jams for all citizens, even those that did not
participate. Another example that is brought forward is the reverse of the above. Hardin
wrote that

[...] the tragedy of the commons reappears in problems of pollution. Here
it is not a question of taking something out of the commons, but of putting
something in-sewage, or chemical, radioactive, and heat wastes into water;
noxious and dangerous fumes into the air; and distracting and unpleasant
advertising signs into the line of sight. The calculations of utility are much
the same as before. The rational man finds that his share of the cost of the
wastes he discharges into the commons is less than the cost of purifying his
wastes before releasing them. Since this is true for everyone, we are locked
into a system of "fouling our own nest," [...]

Certain IN3 features enable the same problem for the protocol. Requests are separated
into two categories as previously described. The problem lies in the dependability of
those requests. Clients that want to send a transaction within the ethereum network for
example, have to request non-provable values from the node such as the current nonce
or balance. But since those values are depending on the server’s personal scope of
the blockchain it is not possible to hold the server accountable for any false information.
Servers currently have the problem that clients don’t have a unique identification that
couples them to the real world. Clients can change their identity very easily and thus
appear to be a new user rather than one already known. If a client requests the current
blockhash for example, the server can not know if further requests will be made that
he can charge for. Rational Clients could then use only a subset of servers for free
unvalidated requests and use that information to do validated requests on the other
servers, thus avoiding additional costs that the server that serves unvalidated requests
would have put on top of the paid validated requests.

Even if the server would want to be paid for unvalidated requests, from a
client’s perspective payments are not feasible for those since the client can not prove



Chapter 4: Unvalidated Requests 8

data validity. Rational servers would then instead of finding the true answer to the re-
quest send false information which is easier to procure since clients can not know that
it is in fact not the correct answer. It is shown in another chapter how that problem can
be solved, however, one unique attribute of unvalidated requests is that they depend
on server context and thus, must not intentionally be a lie. Servers that have the latest
blockhash simply cashed for performance can not be differentiated between servers that
would request the blockhash every time but run on a micro fork or simply lack behind in
blocks. Thus even if the client would know that it is a wrong response it can not punish
the server for its doings and therefore, the original problem still exists.

This problem thus represents a form of the tragedy of the commons or other-
wise known as the free rider problem that is similar to the pollution example. All clients
can use up the resources of the servers. The costs are however only carried by a few.

4.2 Solutions
Solutions to the tragedy of the commons are generally to either have a regulatory body
in the form of a government that controls access rights and usage permits or to privatise
the commons. To find an appropriate solution for the IN3 case we need to first define
the actors more closely. The commons as discussed here refer to the capacity of all IN3
server to serve requests. It might seem at first glance that in fact, this capacity is not a
common at all since each server can individually decide whether to provide requests or
not. In fact, later in this section a discussion of a case where a server will only accept
validated requests and avoid the cost of serving unvalidated ones is raised. However,
two attributes of the current implementation strongly suggest the request pool to be a
common.

As previously mentioned, the execution of validated requests depends on
the information received from unvalidated requests. Servers can thereby not make any
money without there being a free provider for that information. Secondly, Servers can
not effectively distinguish between clients, because clients are not bound (and in fact are
discouraged) to use the same server for dependable requests. In this setting, servers
are the only available information provider and are required therefore to provide free
requests. This description fits with Elinor Ostroms definition of common-pool resources
(CPR) that separate the actual resource from property rights [6].

CPR’s come with two attributes: "(i) exclusion of beneficiaries through physi-
cal and institutional means is especially costly, and (ii) exploitation by one user reduces
resource availability for others".

(i) is fulfilled through the problem of identifying individual clients and (ii) is
self-evident, that when one client uses a request, the overall pool of available request
slots decreases. Servers are thus acting as property owners that are forced to provide
access to its capacities and those capacities are then used as a common. Clients are
then the consumer of the common. One last actor can be defined as the Government. In
IN3’s case that would be the protocol designer/software developer. The developer can
regulate certain aspects of consumption by pushing code updates or by defining protocol
rules. Since he is not however the "property" owner, it can not be safely assumed that
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those rules and protocols are actually enforced.

4.2.1 Non governmental approach
It is now discussed what happens if a self governing approach or a non-governmental
solution would be pursued. This would mean that clients find a way to self organise us-
age rights over server capacities. In order to do so, several criteria need to be checked
according to Ostroms. These include resource boundaries, the threat of resource de-
pletion, a thick social network with established norms, and lastly a way to incentivise or
punish behavior.

Resource boundaries are very clear, as it is simply the sum of the overall net-
work capacity. It is not known how big that capacity is in general but it can be estimated
by looking at the onchain node list. Threat of depletion will at the latest show when
it is occurring but can also be indicated in advance through average response times.
Servers that are already at capacity will reject further responses and the client will need
to find another server. For now, we will assume that there is a sufficient server scoring
run by clients to discover resource depletion in the early state.

Social networks however are clearly not a given. This is partly because the
user group is so diverse. IN3 is going to be used by end customers running it on their
smart phone as well as big industrial companies running it on millions of smart sensors.
This makes it inherently difficult to establish a baseline of norms and rules. Additionally,
the fact that everyone is anonymous within the system makes it nearly impossible to
properly punish over usage. Just getting to know the exact amount of consumers is im-
possible from the client side. It is clear now that letting the clients self organise is simply
not possible since they would just over consume due to a lack of rule enforcement.

4.2.2 Privatisation
The reason why unvalidated request had to be classify as a common was that the ex-
clusion of beneficiaries was very difficult. This hurdle must be taken in order to privatise
the request and thus incentivise the servers themselves to make them sustainable. It
will now described how a game under the current assumptions and analyse each par-
ticipant’s strategy to show more clearly what we mean. A game consist of the following
ingredients:

• A set of players P = {i, j}
• A set of possible strategies S where Si represent the set of strategies for player i

and si a particular strategy for player i and s is a particular strategic profile of a
play of a game
• A payoff function denoted as u(s) where ui(si,sj) is the payoff for player i when i

chooses the strategy si and player j chooses the strategy sj

In this case only one shot games are considered. Reasons for that are simply
the fact that a client does not have to send multiple requests to the same server. Even
a limited amount of Servers would not change that fact since the client can change his
identity after each game with no extra cost. As mentioned before, clients are encour-
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aged to send dependent requests to different servers to avoid an attack vector where
the server can potentially use the gathered information for front running for example.
Strategies are defined as follows:

• sclient = {p;n}, where b stands for "paying for a validated request in the future"
and n for "not paying for a validated request in the future"
• sserver = {s;d} where s means that the server will "serve requests" and d means

that the server "does’nt server request".

Clients can decide if they are going to make another request later on that will
be paid for. That means for the server that it can put the cost he had from the unvalidated
request on top of the validated request. If the client chooses not to do so, the server
will have been left with the costs created by the unvalidated request. It is assumed for
the payoffs that sending a request and not sending a request have a cost close to 0.
When the server is not serving a request it has no wins or losses. If he serves a request
and the client is later buying a validated request he will have the cost of the unvalidated
request but will also gain a payment k later on. We assume that k > y > x where k is
the value of the payment, y is the cost of the validated request and x is the cost of the
unvalidated request. Thus the payoffs for the server are very simple:

• userver{p,s}=−x− y+ k
• userver{p,d}= 0
• userver{n,s}=−x
• userver{n,d}= 0

Payoffs for the client can be described as follows: In both cases where the
server is not responding to his request the payoff is 0, uclient{p,d} = uclient{n,d} = 0.
The value for a response from the server is dependent on its validity. For the ease
of this use case it is assumed that there is a solution that will prevent the server from
lying by making its payoffs close to negative infinity. Thus they are dominated by other
strategies and can be left out. This means that if a client is going to buy a validated
request later, his payoff for a response will be {p,s}= v− k, where v is the value of the
validated request. For the case that the client is not buying an extra request the payoff
is {n,s} = w. A rational client will only send a validated request when v >= k, since
he would make a loss otherwise. It can be seen that a business will only happen when
v >= k >= y+ x and we will take this as a requirement. Seeing that the server needs
to cover the cost for the unvalidated request we can safely assume that w < k and thus
w > v− k.

With those payoffs the game can be represented in a payoff matrix shown in
figure 4.1. Those payoffs show that the Nash equilibrium lies with the client choosing
not to buy a validated request and the server not responding. Even worse, the strategy
to pay in the future does not even dominate the strategy to not buying one in the first
place. The reason for that is the fact that v is not required to be bigger than k and k also
covers the cost for w. Only when v > k the game turns into a coordination game.
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Figure 4.1: Payoff matrix

To make the protocol work it is necessary to change the payoffs for the play
{p,s} and make them more profitable for the client (or subsequently lower the profits
for the play {n,s}) and lower or remove the negative payoff from the play {n,s} for the
server. There is one major restraint that if solved will do both and that is the problem
that client identity is exchangeable. Under the assumption that it can be safely ensured
that clients can be consistently identified, the game changes from a one shot game to a
repeated game.

It is important to avoid unvalidated requests that are disproportionately sent
to a sub set of servers. Therefore it must be ensured that all requests are distributed
equally or that clients are forced to send a balanced subset of requests to a specific
server. The first can be achieved by ensuring that server selection occurs in a fair
distribution. The second can be achieved by forcing clients into playing a finite amount
of games with a specific server and ensuring that the payoffs for the server are positive
for the complete set of plays.

Server selection is covered in chapter 5, but it will not help with this particular
problem. While it can suggest to the client what server to choose, it can not force it to
do so and there is no incentive for the client to evenly distribute its requests. Selecting
a server will suggest what the most profitable server for the client is which might not
match with the goal of stabilising server cost.

The Problem with making clients play a finite amount of games is the fact
that unvalidated requests come before validated requests. One way to solve this is to
not only sell validated requests, but instead packages that contain unvalidated requests
as well. Thus the client is strongly incentivised to use those requests but he is also
not forced to use subsequent requests on the same server. This would also fulfil the
requirement of identifying clients, since the server can give out a key that must be used
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in each communication. Package sizes can be adapted to the amount of requests the
client projects to have in the future. Servers can freely set a price that could include
price cuts if the client buys big enough packages or the server can make it more costly
if only a small package is bought.

Similar solutions can be found that are already in productive use. API keys
are distributed to clients that have different tier levels ranging from free to premium
while free tier have a limited amount of free requests and higher tiers can be purchased.
To avoid clients just generating free tier keys, those keys are often coupled with the
underlying transport protocol, for example keys that are linked to specific ip addresses.
Our solution provides a compromise by providing protocol level certainty of payment but
also excludes anyone not willing to pay, thus raising the entrance barrier.

Strategies for the client then changes to buying a package or not buying a
package in the first turn and then to simply sending a request or not. Payoffs change for
the server to receive an initial big payment and only subsequent turns will then create
the cost that will then be subtracted. As long as the wins from the initial package will
cover those costs and the package price is not higher than the clients utility the game
stabilises and both parties get what they want.

4.2.3 Peer to peer solution
A totally different approach to the original problem is to redefine the common to repre-
sent not the server capacities but instead the client requests. Server would then become
the consumer. In order to sustain the system, servers would need to serve unvalidated
request to prevent the network from collapsing. If no unvalidated requests are served,
validated requests will stop and the common would collapse. It is now up to the server
to coordinate the consumption of requests, by creating a peer to peer network for server
nodes to fulfil the requirements as set forth by Ostroms for self governance.

In a peer to peer network, the nodes can punish each other by not forwarding
any data. A reputation system can then represent the social structure. Ardabili and Liu
[13] have shown through mechanism design "that not only a network has the incentive to
provide information about itself [...] but also that this information can help decrease the
estimation error". With that reputation system, servers can forward requests that they
are not able to handle themselves to other servers based on their reputation score. If the
criteria is set based on the amount of unvalidated requests served and the amount of
validated request forwarded to others, the network can self regulate and find the optimal
balance.

One issue that arises however, is that the client is not in direct control any-
more on who will actually serve the request. It would simply send a request into the net-
work and get a response. However, if the servers will keep track of performance within
the reputation system it could even solve that problem. This kind of system would work
great for requests that require a reasonable amount of computation since the overhead
of forwarding messages becomes rather big. IN3 has not many requests that actually
need much computation, thus this solution in its current concept is not applicable at the
moment.
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4.3 IN3’s reality
While it has been shown that there exists a problem on a protocol layer, there where
also a few assumptions made in the beginning that must be met in order for this system
to justify the overhead. For one it was assumed that there is a large amount of request
of the form of unvalidated. It was also assumed that the system runs over capacity,
meaning the common could be over used. Both assumptions are correct in theory, in
practice however it is far from true at the time of writing. Currently IN3 mainly supports
Ethereum. IN3 only has one unvalidated request for Ethereum at the moment which is
the blockhash. Validated requests are only partially dependent on that information. Also
servers do not require a huge amount of effort to provide this information, since it can
just cache it and only has to change it roughly every 10 to 19 seconds.

On the other hand, finding a solution to this problem is in a sense important
for IN3 plans to support more blockchains in the future where that might be different.
The other point is that the system is in fact overused. It could become a problem in the
future but is unlikely if there is a proper incentive in place which is described in another
chapter.

Lastly to mention is the attack vector of sending all unvalidated request to a
specific subset of Server thus creating only cost and no gains for that specific set. While
it does not produce any particular profit for the client, it certainly creates a problem for
the server. Server selection solutions discussed in the next chapter do also directly fail
in finding a solution to the problem, since attackers could just make their own selection.
Attacking a server in such a way will only be successful however if a larger part of the
clients do so as well.
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5 Server scoring and selection

Since IN3 is not built as a network but more like a set of servers to choose from, the client
must determine who the best communication partner is. For this it will run an internal
scoring system based on meta data collected through its lifetime or past down from a
superior host system. Internal scoring is made of preferences and develops depending
on mostly external factors while still allowing the user to choose specific limits on chosen
attributes. This chapter will discuss what factors play a role in the scoring and how it
can affect the overall network performance.

As stated, the goal of the server scoring is to pick the best server to commu-
nicate with. Server scoring is thus a big part of the server selection process. Clients
are not reliant on the settings installed by the protocol designer, hence only suggestions
can be made here. However, the reasoning behind these settings is to have the best
server handling requests. Clients are naturally inclined to pick the server that suits them
the best but not those that are the most healthy for the system.

Taking a server with an optimal score, all clients will try to access that server.
However the capacities for that server will be reached at one point and two things will
happen. First, thinking about a rational acting server it would increase its price since
the demand is higher than the supply. Secondly, all clients will start to downgrade the
server internally because its response time went down and the prices went up. Servers
that might have higher costs or that are newer to the system could have a better chance
of being chosen. Internal scoring on the client side will thus not only allow the clients to
use the best suited servers but also balance the load among the servers that meet the
scoring criteria the best.

There are 5 scoring attributes that impacts the decision making process the
most. These attributes are highly dependent on the business requirements.

Response Time This attribute indirectly measures server performance based on a set
of different factors. Most prominently is the kind of request made. Some are more com-
putation intensive than others and the scoring must take that into consideration. Multiple
approaches can be taken here. Firstly the scoring could occur for each request individu-
ally. That would allow for a very detailed server selection based on the request the client
wants to send. Servers could then specialise on a specific set of requests. Network per-
formance could increase overall since servers with lower calculation capacity can serve
low effort requests more easily and clients will quickly learn that requests that require
more power should be directed elsewhere. It is even possible for servers to categorically
reject certain requests without lowering its score perception overall but instead only on
a request specific score. One disadvantage of that method is the clients capacities to
store that amount of data. For each server not one but multiple scores must be stored,
which might become an issue for IOT devices. An alternative is to take a specific re-
quest and measure the average. What request is chosen should be left up to the client
to decide, if necessary even at random. This prevents servers from optimising just that
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one request since their score is measured against random requests. It is also possible
to normalise each request. Thus the client does not need to store one list of response
times per request for each server but instead only one general table with an average
response time per request. This average would be taken from an initial probing and all
following requests must measure up against that number. Since all response times are
measured with the same unit they will affect the score equally2 . If the client notices that
most servers are strongly above or below the average it must correct its values from
time to time.

Cost Measuring the cost has actually the same issue as response time in that each
request is probably going to be charged differently. Thus either each server gets a price
list for each request or a general table is used with an average for all servers.

Reliability In the context of IN3 we will define reliable twofold, one as measurement of
ignorance and two as a measurement of dishonesty. For a client it is of importance to
recognise servers that do not tell the truth. Servers can lie in multiple ways such as
sending false answers to unvalidated requests or wrong data in the merkle proof. The
server could also purposefully withhold information. Clients can not differentiate be-
tween lost information and withheld information. A Lie is for the client equally damaging
as withheld information, thus we measure both in the same category. Lies will lower the
score more dramatically as opposed to lost information. It can be argued that even false
information does not necessarily originate from the servers intention to lie but instead
from an error in the transport layer. Since transport layers however have their own way
of detecting those errors we will assume that error correction will also be handled on
that layer and the information that finally reaches the client has the intended content.

Age This attribute indicates how long the client has been dealing with this server already.
The more often that server has been chosen to be used, the more weight does the score
of response time for example have. If two servers have a response time of 5ms, one
having served 1000 requests to the client and the other merely 10, the server that served
the 1000 requests showed that he can sustain such performance over time, while the
other that only server 10 might have only done so for those first ten. With age we can
factor in the value of a long standing relationship and the security that comes with it.
A Server that the client has communicated with for thousands of requests and that did
never send a false response is way more desirable in some instances then for example
more cheaper requests from a server the client never dealt with.

Deposit size For validated transactions, the deposit size plays a big role. It represents
the security guarantees given to the client. In the event that a server is lying on a
validated request, the client can slash the deposit as collateral. The higher the deposit
is, the more secure the client can feel. This does not however have any effect on the
unvalidated requests. Deposit size should then only be counted for where necessary.
Important to note at this point is as well that this attribute is most likely going to be

2 server1.responseTimeScore += requestType1.avg - response.responseTime;
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related to cost. Servers with a high deposit represent a service for high value requests
and can thus charge a higher price since it only aims at a specific part of the market,
namely high value requests where a higher transaction cost is not of much importance
as they do not appear as often as low value transactions.

More attributes can be added later during production to increase accuracy.
For that however, more real life data is needed. In order to make a more accurate
model, an additional factor has to be considered. This is because scoring is based on
individual clients and it is important to ensure that the server that has just joined the list
of in3 nodes will also be chosen. Clients act selfishly and if they already have a good
sub set of servers they might not want to take the risk with a newer server that might be
potentially more slow.

On the other side is however the fact that the new server might also be
faster than the server in the clients chosen subset. This problem is known as an optimal
stopping problem. The client has to decide at what point it stops looking for a better
server. Optimal Stopping problems are often explained with the example of the secretary
problem. Having multiple applicants, the task is to pick the best one out of all of them.
However, the interviewing process costs time. Thus the question arises on when one
applicant should be chosen.

The solution is to stop looking at the point when the probability of having
found the best candidate is maximised. Problems of that category can be solved with
the odds-algoritm shown by Thomas Bruss [7]. In short it shows a lower bound of
1/e, which is around 37%, meaning that the search should stop when the next best
candidate is found after the initial 37% have been interviewed. In our example however
we are trying to find the best sub set of servers from all servers on the node list. Bruss
at al [8] showed in a follow up paper a solution for finding that subset. It shows an
algorithm with which a set of best servers (observed records) can be selected with the
highest probability.

With this algorithm, it can be certain that the maximum probability of the
best subset of servers is chosen without having to iterate over each server on the list. In
order to ensure that all new servers can be selected by older clients, the average score
between servers in the subset is used. If one server goes below the threshold the client
will remove it from the sub set and find another server that meets or exceeds the set
average threshold. Additionally we make the sub set size dependent on the overall size
of the node list. This allows for removal of servers if the nodelist shrinks or the ability
to add to the sublist if the nodelist grows. The initially set server score average will
deteriorate dependent on the fluidity of the nodelist. It is reasonable to run the search
for the server sub set from scratch if a high enough number of servers on the list has
changed or a significant amount has been added.

Those computations can be very taxing on the host machine because they
are highly dependable on the random server selection and when a good observation
is a record. Costs and duration of finding an optimal subset can thus be higher than
the gain aimed for by the client. Clients themself would have no other choice but to
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run a sub optimal server selection. As a solution to that conundrum an external ser-
vice could be created that does the server scoring and provides that information upon
request. It would centralise an important part of the system’s stability, but with enough
independent sources the client could end up saving on request cost in the long run.
Big companies running client fleets are more likely to implement such a service since
the saved cost from running optimal requests is more likely to be higher than the cost
created by running that service. In addition they would not have an additional trust issue
between client and the external server scoring service. Services such as these would
act as traffic regulators which would highly benefit the stability of the system as a whole
and ensure that new servers have equal chance of being selected if their performance
is up to market standards.

5.1 Validity estimation of unvalidated requests
Since there are requests that can not be validated from a single source, the client makes
a decision based on probability. One option is to use its server scoring to determine
trustworthy servers based on age and reliability. Secondly it can ask multiple servers for
the same information and come to a conclusion on what the most probable truth is. It is
also the first thing it can in fact do, because there is no server scoring in the beginning.

The easiest way to find a consensus is to take the most common response
as truth. Dishonest or even just malfunctioning servers can be part of the servers that
are being asked and thus we must calculate the probability that at least half of the re-
quested servers have sent a wrong response. To simplify the calculations we assume
that dishonest and malfunctioning servers are classed equally. Clients can not deter-
mine between dishonest and malfunctioning behaviour anyway which makes it also eas-
ier for them later on to calculate the percentage of problematic servers. Picking a subset
of servers without picking any server twice is calculated through a hypergeometric dis-
tribution where

• N equals the number of server on the list
• M equals the number of dishonest server
• k equals the size of the subset being picked
• x equals the number of dishonest servers in the subset

The probability for x dishonest servers in a picked subset of size k is calcu-
lated by

P(X = x) =

(M
x

)(N−M
k−x

)(N
k

)
If we want to know how probable it is that at least x number of dishonest server are in
the subset we must sum the density for 0 up to x with

P(X ≤ x) =
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The Number of servers on the list as well as the number of dishonest servers
is not known in advance. Business requirements from the client are also important to
determine the best size of the subset. For some requests the accepted probability of
being cheated on is lower than for others. As a guideline figure 5.1 and 5.2 show the
distributions for a list of the size 1000 with a chosen subset of 3 and 5 with a growing
number of dishonest servers.
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Figure 5.1: Probability distribution with N=1000, k=3, x>=2

It can be seen that clients must then decide if the cost of asking more
servers is worth the added security. Appendix A includes some more graphs with mul-
tiple different parameters that might be realistic and can serve as a first guideline for
implementation purposes. It is also important to note that the parameters are going
to depend strongly on the server selection procedure, since it might exclude dishonest
servers from the picking process done through the distribution calculations. Even with
a simple and somewhat effective server selection, odds of being cheated upon can be
lowered drastically. The client would start off by picking servers at random. With time it
creates a list with servers that appear to tell the truth based on the experience it had.
Servers that appear to send false information are scored lower and are then less likely
to be in the base set of servers picked from (previously denoted as N).
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Figure 5.2: Probability distribution with N=1000, k=5, x>=3
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6 Payments

One of IN3’s main value propositions is decentralised blockchain access. Experience
has shown that sustainability of decentralisation can be an issue. Ethereum for example
was built around the idea that everyone is running an Ethereum node to access the
blockchain. Each client would therefore be part of the p2p protocol. It didn’t take long to
realise that this is currently not feasible. Blockchain size increased too rapidly and soon
smaller devices or even home computers could not keep up. Light clients were the first
solution that tried to mitigate some of these shortcomings. The problem was and still is
that light clients required real nodes to serve them data. Thus blockchain access was
becoming more centralised.

Early ideas around light clients involved a token system that enabled full
nodes to charge light clients for serving them. This is necessary since normal nodes do
not have an incentive to spend resources on requests from strangers. IN3 is working in
a similar fashion. It removes some of the restraints of light clients such as blockheader
verification, but thus also moves it a step further away from the core technology. Light
clients were developed together with full nodes and those core developer groups had
easier access to Ethereum features. IN3 on the other hand exists on a layer further
up.

Another solution that became big over time are remote nodes. Currently In-
fura is serving thousands of transactions daily. From a business perspective that doesn’t
make any sense, because there are no profits to be made. While they were first funded
through outside investors they now started to take fees for their services. The main
difference between IN3 and Infura is the fact that with IN3 certain requests can be cryp-
tographically proven as valid while Infura must be seen as a trusted source. In order
for IN3 to work, servers must be incentivised to take and respond to requests like Infura
eventually did as well.

6.1 Non monetary incentives
One way to look at IN3 is from a customer’s point of view. Companies want to use IN3
because they don’t want to rely on a centralised or trusted service, even if it is their
own. Having a distributed access network brings more security and reliability that can
be marketed to the customer. In order for the network to have a sufficient capacity
each company should run at least the amount of servers it is consuming as a whole.
Additional security is added for their own clients in case all other servers in the system
fail, as they would then limit the service of their server to their own client fleet. How do
you guarantee now that the network will not be overused by companies that do not run
their own servers.

Ignoring the results from the chapter on server selection it is assumed that
that server selection occurs totally at random. Each client is then assigned a specific
key that identifies them as being part of company a. A server from company n will, after
a while have an estimation of the amount of clients each company holds, since given
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enough time, each client will pick that server n at least once. With that estimation the
server can know if the amount of servers registered in the node list under company
a’s name are sufficient to cover all their clients. If that is not the case, company n’s
server will proportionally decline requests from company a’s clients. Each company is
thus incentivised to run at least the amount of servers to cover their own clients which
results in an on average balanced network. Clients without a company can join and
build partnerships or pay external companies to use their key. This would avoid the free
rider problem described in chapter 4.1.

This solution has some issues. One problem is that the node list can not
verify the true capacity a server holds. To circumvent that, clients can report periodically
to its company about the amount of requests it has made to what server. Using that
metric instead allows a company to more closely judge another company’s performance.
To lower the burden on smaller clients such as iot devices, a company can instead run
watchdogs or buffed up client hardware. The problem with those watchdogs is however
that they can only approximate the result and additionally put a burden on the systems
capacity. The fewer watchdogs a company runs, the more inaccurate the estimation
gets but the more watchdogs are run the more overhead is created for the system as a
whole.

Another issue is that companies can hide the real amount of clients they
have. To do that, the server divides the node list and distributes the parts between all
clients. Other servers will now only receive requests from part of the client pool and thus
think that the company only needs a fraction of the real capacity. Since it is unknown
in how many parts the node list was split, it is difficult to make counter measures such
as running multiple servers under aliases that communicate with each other. Proxy
servers can also camouflage a servers identity and forward requests to a totally different
server. Servers will appear on the nodelist that are in actual fact not serving the request
himself but instead just redirect them. System capacity is thus bloated and a shortage
of capacity is the result.

6.2 Monetary incentives
In order to encourage people to run IN3 servers, we incentivise them with the ability to
make a profit. this is done by creating a simple market on requests. Chapter 1 goes
into details on the difference of unvalidated and validated requests, but for this chapter
we will summarise this into request packets. The contents of this packet shall not be of
concern at this point, only that they are uniform among all servers. A market will develop
very naturally if we provide a way for the client to purchase those requests, since the
server has costs that need to be covered and the client has a demand for requests and
a willingness to pay.

6.2.1 Market analysis
It is difficult to ensure a healthy market development in advance. This subsection exam-
ines a general market description and then looks into how we can avoid certain market
failures on a protocol level.



Chapter 6: Payments 22

The market described here consists of clients as buyers and servers as
sellers. Answers to responses are the commodities sold. Server scoring is the driving
force of the market which makes it competitive. Servers are inclined to offer faster and
cheaper responses to the client as they will rationally pick the best one to do business
with. It is easy to see that the market will most likely partition itself based on different
attributes. Large deposits for example are more likely to be used by clients for high
value transactions where costs are not that important. Costs would be however the
driving force for low value transactions without time constraints such as sensor data
from an IOT device.

Servers can specialise on parts of the market depending on how the server
scoring is going to be implemented. Particularly of interest for market failures are mo-
nopolies. Especially in crypto-economics, monopolies can be very destructive not only
on the market but the underlying technology. The whole premise of blockchains is de-
centralisation. Without it block manipulation and censorship can go unchecked. In the
case of mining pools we have seen how large sized mining pools broke themselves up
on their own because they saw the potential problem that came from it. In the case of
access providers like Infura however, a break up has yet to occur. For IN3 the same
problem arises where unchecked server clusters could create such access monopo-
lies. This will not only endanger a fair price building but also attack the underlying value
proposition of the IN3 protocol itself.

Monopolies destroy that value by centralising all traffic which in turns create
a trust problem. In an ideal market that would lower the demand curve as the value for
rational buyers for requests would go down, but the case of Infura shows that this might
not be the case at the moment. Rational actors do not choose the most trustless or
decentralised approach but instead the cheapest. For IN3 use cases however we will
assume that this is not the case and instead that trustlessness increases the value of
requests. It is a very optimistic assumption, but IN3 is built for a future that becomes
more reliable on blockchain technology as trust in central banks and governments de-
creases.

At least in theory we can see that under this assumption a natural inclination
to avoid market providers that control a large portion of available servers arises. In
practise however, that is hard to enforce. Governments manage monopolies through law
and ensure consumer protection. Real world examples such as mining pools show that
some will act out of conviction, but others might not do so without having an incentive
to do so, be it monetary or constitutional. The current implementation of IN3 has no
way to enforce laws, such as anti monopoly laws, even if they would exist. This is a
side effect of decentralisation coupled with real world detachment. Assuming that there
exists a monopoly that creates the supply on requests, all that needs to be done is to
register the servers under different names which would hide the monopoly. Any attempt
to counter that fails at the exchange institution where privacy is the big value proposition
for them. Thus the clients have no way of knowing who is taking part in the monopoly
and the monopoly can then increase the price to the economic monopoly level.

Monopolies form where entry barriers or operational costs are very high.
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IN3 has currently a very low entry barrier which consists only in the registering in the
smart contract and the lock up of a deposit. With a sufficiently smart server selection
algorithm or an external entity that provides an optimal list of servers to pick from, new
providers have a fair chance against monopolies. As they enter the market they can offer
lower prices than the monopoly which will push the overall price back to the competitive
level. As soon as the competitive price is hit, there will be a surplus on request capacity
and providers will back out. Even if the monopoly would stay, as soon as they increase
the price again, another competitor would move back into the market since the demand
would flow to a lower price. As long as entry and exit costs stay low the market will be
mostly stable.

Monopolies will then only be dangerous if they undercut the competitive
price. If a big player enters the market who can match all the demand with a low price,
other providers will tap out. It is very questionable however how such a monopoly could
potentially operate on a profitable basis, because with its monopoly power it can only
hide information which very rarely can lead to actual profits, thus causing the whole
operation to run at a loss.

A similar problem like monopolies are cartels. Providers can create a price
fixing cartel that distributes profits among cartel members. Joining a price cartel is then
becoming the more profitable choice. The cartel can also fix the supply of request ca-
pacity. In theory it would allow cartel members to adjust server capacities set by the
cartel to push the price above the competitive level. In practice, forming cartels is ac-
tually more difficult to do on an electronic market such as this one. Main reason is that
it remains very hard to prove that individual cartel members follow the set capacities,
since it is more profitable to run at full capacity while being part of said cartel. Car-
tels would thus fail in their goal to fix the supply since no check or enforcement 3 can
be done. It can fix prices but like with the monopoly, joining the cartel would not be
the rational decision anymore because server selection pushes the price back to the
competitive level.

It can be seen that the most common reason to have market regulations
through governments is not needed for this market under the assumption that decen-
tralisation is valued by the consumer and server selection is sufficiently implemented.
For the case where decentralisation is not valued high enough, it can be assumed that
there exist other technologies that serve those use cases much more cost effective than
IN3 does. Server selection and ease of entry into the market are the most important
aspects of IN3 that protects from market failure.

6.2.2 Defining a market transaction
IN3 faces a number of challenges when looking at transactions. Even though it extends
the functionality of Blockchain technologies, it lacks a number of important traits that
make blockchain transactions secure. The most important is the lack of an intermediary.
Blockchains are considered trustless, but in the actual sense of trust that is not fairly
accurate since both participants place their trust in the blockchain itself. Transactions

3 Methods of bullying or punishments outside the protocol such as DDOS attacks are out of the scope.
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between them are mediated by the blockchain who acts as a trusted third party. When
thinking about IN3 however, this trusted third party does not exist. Clients communicate
directly with the servers. Trust is an important part of a healthy and stable market.
Plenty of economic research covers that problem and all converge on some form of
reputation or reputation chains [10]. Regal defines reputation as âĂIJthe amount of
trust an agent has created for himself through interactions with other agents”. Banks for
example only function well because customers have a certain amount of trust that they
have put in the bank based on their or others past experiences. Electronic markets face
that issue largely because now one should be trusted on the internet. Ebay’s success [9]
for example is largely based on their digital reputation system that helps consumers to
determine if the online seller can be trusted, even if he has a pseudonym and can not
be met in person.

In the concrete case of client and server communication that trust does not
inherently exist. Certain attributes of IN3 hinder also the building of reputation on a
system wide level as explained in chapter 2. Clients must rely on their own history
of interactions with a server. Additionally, clients have no way of showing that they
have been cheated on in the payment layer as opposed to the validity of a request they
made. Two approaches can be taken when designing a transaction between a client
and a server. The prepaid approach lets the client pay first and the server will deliver his
response upon payment. Postpay is then the payment after the delivery has been made.
From the clients perspective it is known that the expected payoffs for prepaid depends
highly on the probability or trust that a server will deliver the requested response. From
a servers perspective, its payoffs are the highest when it is cheating on the client. When
the payment behaviour is changed from prepaid to postpaid, the exact same outcome
can be observed, just with flipped roles. In order to change the behaviour to being
honest the payoffs have to change, which then in turn increase the amount of trust put
into a seller or buyer. Choosing between prepaid and postpaid will then depend on the
ease of changing those results.

Consider a postpay system where the level of trust needs to be increased.
Since the client moves second, the trust must be increased in the client. Request value
is set by the client and can therefore not be changed, thus the payoffs of paying the
server must be changed to an amount higher than the price it is supposed to pay as
fee or the payoff can be lowered to a negative value through for example punishment.
Known solutions require however that the client’s identity is known to the server through-
out the current and future interactions. Since anonymity payoffs are based on the cost of
changing identities that cost can then be increased and thereby also increase the cost
of not paying for the request, meaning that making anonymity more costly then paying
for the request incentivises the client to honesty 4. The Cost of changing identity is zero
for two reasons: one is that there is no cost of creating an identity and second because
there is no value attached to the identity.

4 Anonymity in IN3 is more or less not a feature but rather a side effect that stems from the technology
it uses. Removing this trait or weakening it is therefore not a problem until business requirements
demand otherwise.
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Most internet based markets create costs for identity generation just high
enough to make automation not profitable but low enough to not scare potential cus-
tomers away. One approach is a membership fee but most commonly the cost is more
of an indirect result of the registration process. Limiting identities or in that sense ac-
counts to one per email for example creates a cost of generating a new email address.
Those portals move the cost creation simply to another system that deals with identity
creations such as google or facebook. Platforms like that actually spend money to en-
sure that accounts are linked to real human beings. Costs are created there by simple
puzzle solving or time restraints and dynamic algorithms ensure that the newly created
account shows traits of real human behaviour. In IN3 these cost barriers simply don’t ex-
ist. Clients are identified only in some instances by their Ethereum accounts, and even
those can not be validated to be controlled by real people and have nearly zero cost of
creation. It is important to note here is that there is no visible monetary price to pay by
the client, since that would make the barrier of entry much higher from a psychological
point of view. A central registry on the blockchain would then be very ineffective as the
costs are actually visible as a transaction fee. This is still to be proven however.

Value attachment for identities are solved by reputation itself. Dai wrote
"In a reputation based market, each entity’s reputation has three values. First is the
present value of expected future profits, given the reputation (let’s call it the operating
value). Note that the entity’s reputation allows him to make positive economic profits,
because it makes him a price-maker to some extent. Second is the profit he could make
if he threw away his reputation by cheating all of his customers (throw-away value).
Third is the expected cost of recreating an equivalent reputation if he threw away his
current one (replacement cost)." [2] IN3 servers do not check transaction histories in any
meaningful way. Identity value can then be solved by implementing a scoring system
on the server side. Servers would keep a transaction record for each client and enable
certain features only if a threshold score is met. Even identity creation costs can then
easily be solved, since the server is keeping track of each client anyway. Thus it can
link the Ethereum identity to a third party service such as google, facebook or github.
For big company fleets, this can be solved by linking individual identities to company
identities. Clients can present a company identification that can be checked against the
company’s server.

Prepaid systems shift the trust towards the servers. The problems here
are similar to the postpay system. There however, are some traits that make it more
favourable. Firstly the amount of servers is much lower, making the tracking of any
global values much easier. Currently servers are tracked through the node registry
making the creation of an identity very expensive which in turn discourages a server to
cheat on clients. An argument can be made that the server does in fact not need to
change its identity very often, since clients can not effectively communicate with each
other, thus making the amount of request not necessarily much lower for the server by
being put on a blacklist by a smaller number of clients.

There are very simple implementations possible to circumvent this. A repu-
tation manager could be implemented that gathers information on servers like a watch-
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dog and clients could then consult this service to retrieve a list of trustworthy servers.
The trust is then shifted from the server to the watchdog. Watchdogs would still need to
find a way to generate enough reputation 5 but thinking about a more tightly knit system
within a company, clients pertaining to that company can inquire of a company’s inter-
nal watchdog who is trustworthy by default. This would have the same effect as clients
within one company or organisation sharing scores they made of servers between each
other. Since they have a much higher trust among each other this information can be
seen as reliable. If a server now cheats a client, that server is not only losing revenue
from one single client but from a whole subset. As it is unknown to the server how big
those subsets can be, the projected loss maximises since all clients could be in the
same subset. Even statistical counter measures are of no effect here because clients
can regularly change identity, meaning that if a server recognises that a set of clients
stopped requesting from it after it has cheated, that information can become useless
as soon as those clients changed identity. It must therefore only be proven that linked
subsets of clients exist to prove that the cost of cheating will exceed the wins.

There are a number of cryptographic approaches that can help solve this
specific problem of transaction without actually using prepaid or postpaid but instead
simultaneous interaction. One such set of solutions are known as simultaneous secret
exchange schemes, where both parties send an encrypted message to each other and
then exchange the key bit by bit. Those protocols require correctness, meaning that
the validity of each bit can be verified, and fairness, meaning that both parties have
approximately the same amount of computational effort at each step, given that both
have equal computation power. Fairness is thus simply not given in the context of IN3.

Deng et all [11] introduced a protocol for certified emails that employs a
trusted third party to ensure that a receipt of deliverance is sent. This solves an existing
problem with payments on IN3, as cheating is no longer possible by withholding payment
or request response. this is because both are derived at the same time. The effects on
performance however would be big, because each single request turns in to multiples
based on the protocol implementation. It has also been suggested that the postman
can be run within a trusted computation device. That would remove the third party as
such and instead simply make the protocol requirements to run such a device on each
side.

A third solution is using a protocol called coin ripping [12]. The general idea
of the protocol is that the client would rip a bank note in half and send one half of it
together with the request to the server upon which the server will deliver the request
response to the client who will then send the other half of the bank note back. If neither
of them cooperates, then the server will have lost the effort put into serving the request
and the client will have lost the total amount of payment. Details of that protocol reveal
however that in order for this to work, a trusted bank is needed that stops the client from
spending his half bank note anyway (since this thesis is talking about digital coins, the
client will still have the other half, thus the server would actually receive a encrypted bill
that he then presents to the bank, indicating that the client is not allowed to spend that

5 It can be thought that this entity becomes a licensed entity under government watch.
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exact bill, and only accepts the bill from the server if he has the decryption key he would
get from the client upon successful delivery).

6.3 Payment technologies
Many of the desirable attributes of IN3 must be conserved when picking a payment tech-
nology that drives market transactions, because unlike the underlying Blockchain tech-
nology, IN3 does not have that feature intrinsically built in. Additionally the chosen tech-
nology must be capable of serving hundreds of requests per second. Blockchain itself
is already struggling to keep up with the demand and transaction prices rise across the
board. IN3 is adding thousands of new users to the already heavily loaded blockchain.
If for each IN3 transaction, even for those that do not in fact change state, another
blockchain transaction is added on top and the resulting cost would be high and its ca-
pabilities would be maxed out quickly. Payment solutions that keep most of the value
propositions of IN3 as much as possible are desirable.

The following section describes the two main Layer 2 scaling solutions:
Sidechains and State channels. These solutions are the most researched and worked
on ways to scale Blockchains up to serve thousands of transactions. Blockchains are
not fast/scalable because they focus on security and decentralisation. Layer 2 solutions
will either reduce decentralisation or security. Seeing that it is not possible to lower the
security standards in payment solutions, there has to be a decline in decentralisation as
a result. The following concepts will explain on a higher level how the sidechains and
state channels work and what trade-offs come with them. This section will also look
at some implementations that are ready to market and could be adopted as payment
providers for the IN3 network.

6.3.1 Sidechains
Sidechains are moving much of the logic away from the main chain and load it onto an-
other more centralised chain. This chain will provide another consent algorithm which
includes fewer participants, therefore centralising the power. Crypto economic incen-
tives or cryptographic proofs ensure that even though the system is centralised but still
trustless. Exit strategies are put into place to allow the user to withdraw his deposited
money even if the consent participants become malicious. Currently, there are two ap-
proaches that are the most promising, namely Plasma and Rollups.

Plasma Firstly there is plasma, which was developed in 2017 by the Ethereum
foundation and is therefore well supported but also very complex. In Plasma users will
lock up funds in a smart contract on the main chain. These funds are transferred to
the plasma chain as soon as they are included in a plasma block. A set of validators
is creating new blocks. Each commitment period the root hash of the merkle tree is
stored on the main chain. Plasma comes with an elaborate exit scheme for the user to
withdraw his funds from the Plasma chain back to the main chain. Every time plasma is
implemented, new challenges appear which lead to many different versions of plasma
like Plasma Cash which focuses on token transfers, Plasma Debit which adds payment
channels to the logic of Plasma Cash and makes them transferable and Minimum Viable
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Figure 6.1: Plasma architecture [22]

Plasma which is a very simple UTXO based version of Plasma. All come with specific
pros and cons [22].

Matic Network [14] implemented a variant of More Viable Plasma. They
have a testnet deployed for ERC tokens and a ready to use wallet app is available. One
problem with minimum viable plasma is that a congestion could happen if all plasma
users want to exit at the same time. Because the linked Blockchain has only limited
capacities and the exit must be done in a set period of time, it might come to a situation
where so many users want to exit that the time to withdraw is too short. No solution
for mass exits are implemented for Matic Network at time of writing. The software is
run under the GPL3 License which makes integration much easier. Development is still
ongoing and they have partnered with a few smaller blockchain startups. The Matic
Network uses a dual strategy of Proof of Stake (PoS) at the checkpointing layer and
Block Producers at the block producer layer to achieve faster blocktimes while ensuring
a high degree of decentralisation by achieving finality on the main chains using the
checkpoints and fraud proof mechanisms.

Basically, anyone can stake their Matic tokens on the root contract to be-
come a staking operator in the PoS checkpointing layer (contract deployed on Ethereum
chain). This provides a decentralised base layer for the Matic chain. At the blockchain
layer of the Matic Network, there are Block Producers, selected by PoS Stakers on the
base layer, who will be creating the Matic Blocks. To achieve faster block generation
times, these Block Producers will be low in number. This layer is expected to achieve 1
second block generation times at extremely low to negligible transaction fees.

On Matic Network’s checkpointing layer, the basis of Matic Network’s PoS
mechanism, for every few blocks on the block layer of the Matic Network, a proposer
will be chosen among the stakeholders to propose a checkpoint on the main chain.
These checkpoints are created by the proposer after validating all the blocks on the
block layer of the Matic Network and creating the Merkle tree of the block hashes since
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Figure 6.2: Matic Architecture [23]

the last checkpoint. The Merkle root is then broadcasted to the staker network for their
signatures. The other stakeholders also verify the proof. They will approve the proposed
block, if it is valid, by providing their signatures. The system needs the approval of 2/3 of
the stakeholders to propose a "header block" to the root contract. Once the checkpoint
is proposed on the mainchain, anyone on the Ethereum mainchain can challenge the
proposed checkpoint within a specified period of time. If no one challenges it and the
challenge period ends, the checkpoint is formally included as a valid checkpoint on the
main chain.

Overall Plasma is a very well researched technology, but also a very com-
plex one at that. Seeing that the Ethereum foundation has researched on that front for
a long time now without one main solution solving all requirements for a second layer
solution gives reason to worry. Matic Network’s approach works but does not come with
its own limitations. One of the main issues of Plasma is the long withdraw periods which
makes that technology very user unfriendly.

Rollups The idea behind roll ups is to summarise a lot of transactions into
a single one. That is achieved by generating an off chain block of data and only store
a proof of it in the main chain contract. Two solutions exist that differentiate in one
major aspect: data availability. In an Optimistic Rollup, the merkle root of the off chain
state is stored in the rollup contract on the main chain. Every operator should verify
the new merkle root, but it can only do so if the transaction data is available to them.
Thus the term "optimistic" since they must rely on the truthful transition and the block
producer must only generate a proof if someone is disagreeing with the transition. Block
producers must also then make the data used for the transition available.

Zero Knowledge Rollups (zk-rollups) operate in the same way, except that
instead of storing the data off chain, they generate a proof that the information was avail-
able at one point and store that proof together with the transaction data and the merkle
proof on chain. One example would be that for each transaction a zero knowledge proof
is generated that proves together with the transaction data that a valid signature existed
for that specific transaction. Since the signature, the biggest portion of an Ethereum
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transaction, is then replaced with a much smaller proof, the block operator can then
store the remaining transaction data (such as amount and receiver) in the call data
(much cheaper place then the state) and writes the new merkle root into the smart con-
tract. It scales Ethereum transactions to 10-20 fold depending on how much transaction
data can be fitted into a single transaction. Users do not have to verify the state tran-
sition because the smart contract is already doing that by verifying the zero knowledge
proof of the state transition. One advantage of optimistic rollups is that it can scale
higher because it does not need to store additional data on chain. However it creates
a problem wherein users must rely on the block operator to provide the data necessary
to proof the state transitions correctness. Zk-proofs do not scale as much but are safer
because the block producer has no way of manipulating the state transition. Proof gen-
eration however takes a long time (currently 20min) which puts a big time restraint on
finality.

Matter Labs [15] is working on ZK-rollups and is funded by the Ethereum
foundation. They lay out their roadmap very clearly focusing mainly on user experi-
ence with the next step in development being privacy. Currently, there is a beta version
deployed that supports eth and erc20 transfers. No specific tx/s measure is given but
estimates are currently 100tx/s on a 5-second finality. The software is developed under
the MIT License as well as the Apache License. Currently, they work a lot on the Zero
Knowledge Proof implementation. The user is depositing from the Ethereum network
using a transaction to the ZK Sync smart contract on the mainchain. He can receive
funds from anyone that already has funds in the rollup.

All transactions in the ZK Sync network are authorised with a signature us-
ing a public-private key pair. Public keys and addresses can be derived from the private
key. A Public address in the ZK Sync network is required to receive funds. For conve-
nience, it is possible to use Ethereum private key to derive a ZK Sync private key. All
operations inside the zk-rollup are arranged in blocks. After a network operator creates
a block it gets published to Ethereum with a Commit transaction. When a block is com-
mitted, its state is not final. After a couple of minutes a zero knowledge proof for the
correctness of this block is produced. This proof is published to Ethereum using a verify
transaction and after which the state is considered final. Multiple succinct blocks can be
committed without being verified.

There are two types of operations for the user within the zk-rollup: Priority
operations and transactions. Priority operations are initiated from the Ethereum network
using Ethereum transactions send to the rollup contract. For example, the user creates
a deposit transaction to move funds from Ethereum to the zk-rollup. Priority operation
can be identified with a numerical id or hash of the Ethereum transaction that created it.
Priority operations can’t be ignored by the network. If priority operations are not being
handled by the operator, the rollup contract goes into an emergency mode where users
can withdraw all their funds based on the last verified state. Zk-rollup transactions are
created and signed off chain with the zk-sync key. They are delivered straight to the
rollup operator who then includes it into the next available block.

One downside of this is that even though the operator can not manipulate
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the state transition, it can decide which transactions go into a block and which don’t.
Matter Labs is working on an operator consensus that enables the generation of trans-
action receipts. A transaction receipt here serves as a promise to include a transaction
into a block. If the transaction is not included the user can slash a deposit made by the
operator.

StarkWare [16] developed a solution that implemented an optimistic rollup.
They founded a Data availability committee (DAC) that ensures the state transitions are
correct. While they also send a proof on chains that proves the correctness of the state
transition, they do not store the required data needed to check the transition itself. That
data is stored by each member of the DAC, and each new state transition needs to be
signed by a quorum of members for the contract to accept it. The software is currently
used in production for trading applications and is closed source. Optimistic rollups have
better privacy properties since the data is not accessible by anyone, making the trading
patterns of users private to the outside.

6.3.2 State Channels
Another well known technology in the blockchain industry are state channels. The gen-
eral premise is that two parties exchange a signed state transition off chain. This state
transition can be executed on the state channel smart contract to take effect. Signa-
tures of both participants are needed for that. Instead of executing the state transition,
the participants can update the data structure by changing the contents and re signing
it. The security of the transition is granted by the smart contract. The participants only
exchange that data struct offchain until either the parties have finished transacting with
each other or one side is not in agreement with a proposed transition.

Payment Channels are a simplified form of state channels. The content of
the transition is simply the balances of participant 1 (Alice) and participant 2 (Bob). Both
Alice and Bob lock up funds in the payment channel smart contract. The state transition
they are exchanging off chain is a change in the distribution of those funds. As shown
in , Alice and Bob start with 5 ETH in the smart contract. Alice then sends a state
transition to Bob which consists of the new Balances (Alice 4 and Bob 6) together with
Alice’s signature. Bob can now sign that transition and execute an Ethereum transaction
which will change the balances in the payment channel contract. Bob does not want to
do that, because he knows he will continue to do business with Alice. Either Alice or
Bob can at any time propose a new transition with different balances. As long as both
sign that transition it can be executed on chain. A nonce in the transition data will ensure
that always the latest transition will be executed.

This concept can be extended to form a network, if a third participant is
introduced (Charlie). Alice wants to send funds to Charlie, but she has no funds locked
up in a payment channel contract with him. She has however an active channel open
with Bob and Bob has one with Charlie. Alice will now send a secret value to Charlie
that is needed to use the transition on chain. Then she will send a transition to Bob that
requires the same secret value. Bob then uses his channel with Charlie to send funds to
him, also requiring the secret value Charlie already possesses. If Charlie now goes on



Chapter 6: Payments 32

chain to execute the transition he will ultimately reveal that secret which can be picked
up by Bob to close the transition with Alice. This system can be used either as a Hub
network, where one entity is in the center of a start network and all participants have an
open channel with him or as a peer to peer network.

A hub requires a lot of liquidity that needs to be locked up. A peer to peer
network has the problem of path finding between the participants. An adaptation to
payment channel hubs are virtual channels. Here Alice and Charlie have an open chan-
nel to Bob. Instead of sending a transition for each transaction through Bob, Alice and
Charlie lock up funds within their payment channels that are open to Bob. Bob will
then approve the lock and Alice and Charlie can exchange new transitions based on the
locked up funds. It is basically a payment channel on top of another payment channel,
but it saves a lot of effort on Bob’s side.

State channels are a bit more complex. Instead of only changing balances,
they can change the state of a smart contract. They are application specific because
they rely on the state channel contract to have the logic implemented to make the agreed
upon transition. Generalised State Channels move that logic also off chain. Instead
of having Alice and Bob agree on a transition in a contract, they actually agree on a
complete state that can be deployed directly onto the chain. With this, new features or
requirements can be introduced into the transaction.

Raiden [17] is the most prominent name for Ethereum state channels. They
have worked on a solution for years now and it is the perfect example to show that even
though the general concept is simple, the actual implementation comes with a lot of
complexities. Raiden is still in its beta phase and they have only implemented payment
channel networks.

Connext [18] built a generalised state channel hub. It allows Alice and Char-
lie to extend the payments with conditions that are stored in a smart contract and works
as previously described. To ensure that user funds are withdrawable at all times the hub
must pose collateral.

Perun [19] is currently an academic project developed jointly by the TU
Darmstadt (Germany) and the University of Warsaw (Poland). It is partly founded by
the German Research Foundation and the Polish National Science Center. The Perun
paper itself only discusses multihop payment channels, and construction of multihop
state channels and payment channels of length > 2 was described in a follow up paper.
Perun’s paradigm is that a dispute in a multihop virtual channel must be (trustlessly) re-
solved through the intermediary. More concretely, if there is an Alice-Bob metachannel
through Ingrid with a lot of functionality instantiated, Alice can grief Ingrid by forcing her
to play out all the moves in the metachannel.

6.3.3 Choosing a solution
Use cases play a huge role in determining the technology stack. It must be considered
who is interacting with whom for what reason. That will also determine things like who
is paying the transaction fees etc. The use case is deciding at the end which is the
cheapest and most efficient solution. For example things like usability plays a major role
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for payment between end customers but only a minor role for machine to machine pay-
ments like IN3 incentivisation. Each solution requires a lock up of funds. The duration
of how long funds are locked up influences the user base. If for example a lot of funds
are locked up in different payment channels and the client needs to close channels in
order to pay for opening others, which also implies costs. What if not enough funds are
available to close a payment channel etc. All of this is not a problem if the target user
has high liquidity, but for some IOT use cases this might not be the case.

IOT devices also put a big limit on complexity. Keeping track of a lot of
payment channels might not be feasible for a small sensor. Also things like availability
are very important. Solutions such as payment channels where the recipient must be
online to receive the funds are less likely to find a lot of traction. Sidechain solutions
might be then more reasonable since the recipient does not need to be online and only
one deposit is required to interact with any participant in the system.
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7 Conclusion

This thesis explores a few potential problems that exist in the IN3 protocol and provides
solutions to avoid them. Unvalidated requests can be used to overuse capacities at
least on paper. The problem was presented with economic game theory and possible
solutions where crafted to change the payoffs of the game to reach a favourable equilib-
rium. One solution is to pack unvalidated requests with validated requests and sell them
together. Servers will then always run at least cost neutral and clients have no reason
to not use those requests. Another solution was at least touched on that suggested the
possibility to create a peer to peer network between the servers. They would then self
regulate the incoming traffic based on a network wide reputation system. Even though
that problem exists in theory, it is currently unlikely that it will become a reality. Unvali-
dated requests are right now not as important in the Ethereum implementation because
only the request for the current blockhash would fall into that category. However, future
implementations of other Blockchains could have a different distribution. To use unvali-
dated requests the client sends the same request to multiple servers and compares the
results. A hypergeometric probability distribution was calculated to show how likely it
was to have picked more than half dishonest servers.

The next issue discussed was the problem of server scoring and selection.
Clients must select from a list a server it wants to send his request to. Scoring each
server is the most sensible way for the client to do that. Multiple attributes such as re-
sponse time or reliability where described. It was discussed on how those attributes can
be combined into one single score, it was however decided that it strongly depends on
the clients business rules and use cases. Long node lists could become a problem for
weak client systems such as IoT devices. The optimal stopping problem was discussed
which describes the selection process of picking a sub set of servers from the list while
maximising the probability of having chosen the best servers from the list. If this repre-
sents too much effort for clients, an approximation seemed viable. An external system
was also mentioned that could do the server scoring of the complete list and periodi-
cally update the clients with that information. Especially for larger companies with a lot
of clients that solution seems most viable.

Lastly different ways to make payments possible and how to avoid market
failures on a protocol level were examined. Non monetary incentives to run IN3 servers
appear not viable because of how IN3 is built. This can be solved by resorting to mone-
tary incentives and shows how the process of server selection can prevent monopolies
from forming. Further than this, market transactions were defined to look at post and
prepaid options. Both options can be solved by implementing some form of reputation
system.

Post pay, meaning the client pays after he received the answer to his re-
quest, requires the server to trust that the client will pay. Clients can change their iden-
tity with 0 additional cost. Paying the server will then become not the most profitable
strategy because the client can just change its identity and thus avoid any persecution.
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Servers can create a scoring system for the clients and only unlock certain features if
they deem the client trustworthy. Clients that belong to bigger trustworthy companies
could have a higher default score. It is now in the interest of the client to keep its identity
for the advanced features.

Pre-pay can work if the client trusts the server. Here the server is a known
entity with a cost that is linked to identity creation. Servers do still have more leverage.
Blacklisting servers on the client side will not harm the server since there are much more
clients than servers in the system. A server reputation score service would change that.
Communication between clients that use this external service will make the server lose
more than just one client if he cheats, but the whole cluster. Since the server does not
know how many clients belong to a cluster, his losses must be considered very high. For
him it is now more profitable to just behave honestly. This solution is especially effective
for larger companies that deploy big IN3 clusters. Private clients can also organise, but
must trust the external service.

Concluding, current layer 2 solutions were analysed and probed for the use
in IN3. Because of the large amount of requests, very small valued transactions on a
large scale must be supported. Depending on the business requirements, the use of
payment channel hubs or roll-up systems is suggested.
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Figure A.1: Propability distribution with N=100, k=7, x>=4
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Figure A.2: Propability distribution with N=100, k=9, x>=5
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Figure A.3: Propability distribution with N=1000, k=20, x>=10
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