
VINKTAR
Linux distribution for secure creation of cold storage wallets

Lucas Johns

March 28, 2019

Abstract

This paper describes the implementation of a live distribution for the cre-
ation of cold storage wallets. The aim of this implementation is to simplify
the process of creating paper wallets under high security requirements. The
source code as well as a current build of the distribution can be obtained at
GitHub.

VINTKAR-LIVE
Source code: github.com/envake/vinktar-live
Current build: github.com/envake/vinktar-live/releases/latest

1 Introduction

In order to store crypto currencies securely, the storage of private keys in cold storage
wallets has proven its worth. These are wallets that are never connected to the internet.
The private keys are either stored on special hardware or can alternatively be printed
on paper. The latter is called a paper wallet. Since the purchase of a hardware wallet is
associated with costs, paper wallets are often used as cheap alternative for the long term
storage of crypto currencies. To create these paper wallets, a valid key pair consisting of
a private key and a public key must be generated. Tools have been available for a long
time for all common crypto currencies, mostly implemented in JavaScript. Countless
articles and tutorials explain how to create a Bitcoin paper wallet [1]. But there are
also offers from scammers who have manipulated the key generation [2]. However, it is
safer to generate the keys offline. Ultimately, generating private keys in a small Linux
system running offline has proven to be an effective solution. Distributions such as Tails
or Ubuntu Live-USB are mostly used. But these are in no way optimized for such a
special task. The following sections describe a solution that enables a secure and simple
paper wallet creation process in a Linux live system.

1

github.com/envake/vinktar-live
github.com/envake/vinktar-live/releases/latest

2 System structure

2.1 Targets of VINKTAR distribution

• minimal structure

• offline, no root

• open source, auditable

• cryptographically secure RNG-concept

• intuitive frontend

• high printer compatibility

• modifiable/extensible

2.2 System base

The Debian live-build framework is used to build the distribution [3]. The Debian
Project has already announced in 2010 to develop the Debian kernel completely with-
out proprietary firmware [4]. The distribution is therefore based on a 32-bit Debian
GNU/Linux testing release, since the ”stable” release is usually based on very old ver-
sions of applications. In Live-Build, the configuration of the distribution is done via an
extensive directory structure.

Figure 1: root configuration directory of live-build, image source: L. Johns

The entire system can be built from this structure. Packages contained in the system
are organized in categorized package-lists. The system contains a browser, office
programs and printer-related packages, which allow a high compatibility with common
printer models.

Furthermore, user-defined scripts can be executed at certain times (hook-scripts).
So-called ’includes’ integrate custom files into the live distribution. This provides con-
figuration files for the software contained in the system. The key generation tools are

2

Package list Description Example
apps.list.chroot general applications firefox-esr
desktop.list.chroot xfce4-specific packages xfce4-terminal
fonts.list.chroot necessary fonts for included Software fonts-liberation
live.list.chroot necessary packages for live operation user-setup
printing.list.chroot printer-related setup and driver packages system-config-printer
rng.list.chroot rng-related packages rng-tools

Table 1: Structure of the package lists with examples

also manually integrated into the file system. An essential software component of the
distribution is the browser. Many key generation tools are implemented in JavaScript
and run in the browser. Especially the cryptographic functions of the browser API
become important for later use in the system. Mozilla Firefox ESR is used for this
project. It is fully source-open and available in the Debian main repository. In general,
the live system is designed to be very minimalistic. Both the included software and the
user interface are focused on the use case. Further characteristics are the Init system
systemd, the bootloader SYSLINUX and the used desktop Xfce4.

Figure 2: Xfce4-Desktop showing all included paper wallet tools; image source: L. Johns

3

The Xfce4 user interface is rebuilt from the ground up. A categorical assignment
is used in the paper wallet menu. New applications to be integrated into the system
only have to belong to the category PaperWallets and are displayed automatically.
Furthermore, a theme with corresponding icons has been integrated for the general
appearance. The distribution should be as intuitive as possible to use, which is why
only usecase-relevant UI elements are available. A special feature of the system is that
it starts by default with the root user account disabled. The Linux kernel can be started
with the noroot option to prevent the use as root. The idea is that a root user account
that cannot be used will not do any harm. Furthermore, the distribution is permanently
disconnected from the network. This is also done using kernel parameters, since the
separation should be made at the lowest point of the system stack.

3 Random number generator

Within the live system, secure random number generation is required. Currently, almost
all of the tools included use the browser RNG functions. But there are also other
implementations, such as a shell script for generating IOTA seeds. Using the Linux
kernel RNG in a live environment requires further steps. Linux provides two device
files as entropy source. These are /dev/random and /dev/urandom. This entropy pool
is filled with noise values from the kernel environment, e.g. from device drivers [5]. Since
a system boot without additional user interaction is highly predictable, the collected
entropy is normally stored on disk when the system is shut down. Since a live system
starts with exactly the same disk image every time, this step is not possible.

The problem of random numbers in live systems is not new even for this special
case. The Tails operating system claims to be able to use cryptographic tools. The
developers of Tails try to increase the seeding of the Linux kernel with two additional
entropy sources [6]. Specifically, these are two daemons that are integrated into the
system. The first is rngd, which uses an existing hardware RNG for seeding the entropy
pool until a defined limit is reached. Not every system has a hardware RNG, so rngd
does not help in every case. Therefore, there is a second source that is realized with
the haveged daemon. This uses the HAVEGE algorithm (Hardware Volatile Entropy
Gathering and Expansion), which collects entropy from unpredictable states of the
processor [7]. It is not a replacement for a hardware RNG. The developer classifies the
algorithm as follows.

“One could theoretically reproduce the sequence if he/she was able to repro-
duce all the past events on the machine. They are not pseudo-random either
since there is no (short) seed which would allow an exact reproduction of the
random sequence. The randomness results instead from an inability to con-
trol or predict with sufficient accuracy the events involved in the generation
process.“ [8]

4

According to the description of the official Debian package, haveged is intended
primarily for use on server and headless systems with limited user interaction [9]. Live
systems such as Tails or the distribution developed here have in common with server
systems that at the time of using random numbers only few user interactions took place.
The use of haveged in virtualized environments is sometimes controversially discussed
[10], the HAVEGE algorithm may not be a secure entropy source. The live distribution
developed here is therefore generally not recommended for use in virtualized instances.

4 Integrated software

Initially, tools for 13 crypto currencies are planned. It is possible to extend this at any
time. The selection of crypto currencies should appeal to as many users as possible.
Therefore, the crypto currencies with the currently highest trading volume are selected
[11].

Crypto currency Software Implementation RNG
Bitcoin bitaddress.org JavaScript crypto.getRandomValues,

user generated entropy
Ethereum myetherwallet JavaScript crypto.getRandomValues
Ripple XRP ripply.eu JavaScript crypto.getRandomValues
Bitcoin Cash bitcoin.com JavaScript crypto.getRandomValues,

user generated entropy
EOS eoscafe paper-wallet JavaScript crypto.getRandomValues
Stellar stellar-paper-wallet JavaScript crypto.getRandomValues
Litecoin liteaddress.org JavaScript crypto.getRandomValues,

user generated entropy
Monero monero-wallet-

generator
JavaScript crypto.getRandomValues,

user generated entropy
Tron tronpaperwallet.org JavaScript crypto.getRandomValues
IOTA IOTA-Paper-Wallet JavaScript none, seed generation is imple-

mented from kernel rng
Dash paper.dash.org JavaScript crypto.getRandomValues,

user generated entropy
NEO Ansy JavaScript crypto.getRandomValues
Ethereum Classic myetherwallet JavaScript crypto.getRandomValues

Table 2: Integrated software for cryptographic key generation

An exception of the selected tools is the software ’IOTA-Paper-Wallet’. Here the
private key is not generated in the browser. The tool expects the input of the 81-digit
IOTA seed, which is generated from the characters A-Z and 9 [12]. To simplify the
use in the distribution, a short shell script is written for the generation of secure seeds,
which is executed automatically when the browser is opened in an additional terminal
window. In the script, five seeds are generated with the following shell command.

cat /dev/urandom |tr -dc A-Z9|head -c\${1: -81}

5

5 Typical usecase

In the following, a typical application example is constructed and explained step by
step. Two paper wallets will be created and printed, one for Litecoin and one for EOS.
This requires an image of the distribution and a USB stick with at least one gigabyte
of storage. First the image is written on the stick. For a Windows system a tool like
Rufus [13] is suitable. In Linux the shell program dd can be used. In this example Linux
is used and the USB stick is located under /dev/sdd, so that the following command
results.

sudo dd if="vinktar -live -image -i386.hybrid.iso" of="/ dev/sdd"

The stick can now be connected to the computer where the live system is to be
used. Next, the network cable should be removed. If there are manual switches for
WLAN or Bluetooth, these can be switched off. The printer is also connected to the
computer via USB. The computer is now started and should boot the live system. If
this does not happen automatically, a specific key must usually be pressed to manually
select the boot media during the boot process. In the bootloader menu, pressing Enter
starts the system regularly. After only a few seconds the desktop of the live system
appears. Clicking on the ’Paper Wallets’ menu will list all crypto currencies for which
the system can create paper wallets. In this case EOS is selected first. The browser
opens and displays the generated keys including QR codes. The paper wallet can be
printed by clicking on ’Print’ or by entering Ctrl + P. If the printer is not listed here,
it can usually be configured via the printer settings with ’Add’. Then it appears in
the printer selection. For certain requirements on the layout of the paper wallet, the
office programs contained in the system can also be used alternatively. For example,
several keys can be printed on one page. Once the process is completed, the “Litecoin
(LTC)“ item is selected via the “Paper Wallets“ menu. Since “liteaddress“ includes the
mouse movement as entropy source, the keys do not appear immediately. Otherwise
the procedure is the same. Finally the system can be shut down. Additional options
are disconnecting the system from its power source and resetting the printer to factory
settings.

References

[1] Alexander Weipprecht. krypto-magazin.de. Bitcoin Paper-
Wallet erstellen. [Online] 2018. https://www.krypto-magazin.de/

bitcoin-paper-wallet-erstellen/, verfügbar am 14.11.2018

[2] Mirko Ross. heise.de. Kryptowährung: IOTA im Wert von vier Millio-
nen US-Dollar geklaut. [Online] 2018. https://www.heise.de/ix/meldung/

Kryptowaehrung-IOTA-im-Wert-von-vier-Millionen-US-Dollar-geklaut-3952723.

html, verfügbar am 05.09.2018,15:08

[3] Debian Live Team. debian developers’ corner. Debian Live Project. [Online]
2018. https://www.debian.org/devel/debian-live/index.en.html, verfügbar
am 10.10.2018

6

https://www.krypto-magazin.de/bitcoin-paper-wallet-erstellen/
https://www.krypto-magazin.de/bitcoin-paper-wallet-erstellen/
https://www.heise.de/ix/meldung/Kryptowaehrung-IOTA-im-Wert-von-vier-Millionen-US-Dollar-geklaut-3952723.html
https://www.heise.de/ix/meldung/Kryptowaehrung-IOTA-im-Wert-von-vier-Millionen-US-Dollar-geklaut-3952723.html
https://www.heise.de/ix/meldung/Kryptowaehrung-IOTA-im-Wert-von-vier-Millionen-US-Dollar-geklaut-3952723.html
https://www.debian.org/devel/debian-live/index.en.html

[4] Debian Projekt. Debian Nachrichten. Debian 6.0 Squeeze wird mit vollständig
freiem Linux-Kernel veröffentlicht. [Online] 2010. https://www.debian.org/

News/2010/20101215, verfügbar am 27.09.2018

[5] Michael Kerrisk Ubuntu Manpage Repository. Ubuntu Manpage: random, uran-
dom - Kernel-Geräte zur Erzeugung von Zufallszahlen. [Online] 2018. http://

manpages.ubuntu.com/manpages/precise/de/man4/random.4.html, verfügbar
am 01.09.2018, 11:35.

[6] Tails project. tails.boum.org. Tails - Random numbers. [Online] 2018. https:
//tails.boum.org/contribute/design/random/, verfügbar am 15.11.2018

[7] Olivier Rochecouste. irisa.fr. HAVEGE Hardware Volatile Entropy Gathering
and Expansion, Overview. [Online] 2006. http://www.irisa.fr/caps/projects/
hipsor/, verfügbar am 15.11.2018

[8] Olivier Rochecouste.. irisa.fr. Execution time of a short sequence of in-
structions and hardware volatile states in a modern microprocessor. [On-
line] 2006. http://www.irisa.fr/caps/projects/hipsor/misc.php#measure,
verfügbar am 15.11.2018

[9] Debian Team. packages.debian.org. Debian – Informationen über Paket
haveged in buster. [Online] 2018. https://packages.debian.org/buster/

haveged, verfügbar am 15.11.2018

[10] Nic Waller. security.stackexchange.com. Is it appropriate to use
haveged as a source of entropy on virtual machines?. [Online]
2013. https://security.stackexchange.com/questions/34523/

is-it-appropriate-to-use-haveged-as-a-source-of-entropy-on-virtual-machines,
verfügbar am 16.11.2018

[11] CoinMarketCap. coinmarketcap.com. Cryptocurrencies Market Capitalization.
[Online] 2018. https://coinmarketcap.com/, verfügbar am 19.10.2018

[12] IOTA Foundation. iota.org. Buy and Secure IOTA, Wallets and seeds. [Online]
2018. https://www.iota.org/get-started/buy-and-secure-iota, verfügbar
am 16.11.2018

[13] Rufus USB. rufususb.com. Rufus - bootable USB flash drive. [Online] 2018. http:
//rufususb.com/, verfügbar am 13.11.2018

7

https://www.debian.org/News/2010/20101215
https://www.debian.org/News/2010/20101215
http://manpages.ubuntu.com/manpages/precise/de/man4/random.4.html
http://manpages.ubuntu.com/manpages/precise/de/man4/random.4.html
https://tails.boum.org/contribute/design/random/
https://tails.boum.org/contribute/design/random/
http://www.irisa.fr/caps/projects/hipsor/
http://www.irisa.fr/caps/projects/hipsor/
http://www.irisa.fr/caps/projects/hipsor/misc.php#measure
https://packages.debian.org/buster/haveged
https://packages.debian.org/buster/haveged
https://security.stackexchange.com/questions/34523/is-it-appropriate-to-use-haveged-as-a-source-of-entropy-on-virtual-machines
https://security.stackexchange.com/questions/34523/is-it-appropriate-to-use-haveged-as-a-source-of-entropy-on-virtual-machines
https://coinmarketcap.com/
https://www.iota.org/get-started/buy-and-secure-iota
http://rufususb.com/
http://rufususb.com/

	Introduction
	System structure
	Targets of VINKTAR distribution
	System base

	Random number generator
	Integrated software
	Typical usecase

